Горобец Л. Ж.

Шуляк И. А.

Национальный горный университет

Прядко Н. С.

Институт технической механики НАНУ и НКАУ

Соболевская Ю. Г.

Львовский филиал Днепропетровского университета железнодорожного транспорта УДК 621. 455

ИНТЕНСИФИКАЦИЯ ПРОЦЕССА СТРУЙНОГО ИЗМЕЛЬЧЕНИЯ НА ОСНОВЕ АНАЛИЗА АКУСТИЧЕСКИХ ПАРАМЕТРОВ

Наведено результати струминного подрібнення сипких матеріалів та акустичного випромінювання з метою інтенсифікації процесу.

Results of loose materials jet grinding and acoustic radiation are shown with the purpose of process intensification.

интенсификации Проблема струйного измельчения В области получения микропорошков ИЗ твердых сыпучих материалов решается на основе изучения закономерностей акустоэмиссионного (A3) мониторинга этого процесса [1, 2]. Предложена методика исследований, которая позволяет регистрировать акустическую эмиссию (АЭ) в зоне помола струйной мельницы. Акустическая помощью эмиссия измеряется С апериодического датчика, широкополосного установленного на свободном торце латунного волновода [3]. Другой конец волновода размещается внутри помольной камеры мельницы. Датчик соединен аналогоцифровым преобразователем далее компьютером.

Целью данной работы является исследование и анализ амплитудно-частотных характеристик работы струйной мельницы на различных стадиях процесса измельчения: загрузка струй материалом; рабочий режим струй, когда скорость и концнтрация в струе разгоняемых частиц соответствуют уровню, оптимальному интенсивного измельчения; разгрузка струй, содержащих циркулирующую нагрузку мельницы количестве, недостаточном для эффективного измельчения. Таким образом, перечисленные стадии в различных состояниях загрузки струй

материалом, принципиально отличаются крупностью измельчаемых частиц, скоростью и механизмом их разрушения (удар, истирание) и соответственно производительностью мельницы по готовому продукту.

Начало загрузки струй материалом характеризует режим 1, в котором ускорение частиц и их взаимные соударения происходят в условиях высокой концентрации частиц твердой фазы в струе и, как следствие, при относительно низких скоростях разрушения (механизм динамичного истирания). По мере удаления частиц из газовзвеси (через систему классификации циклон фильтр) В уменьшается насыщенность струй твердой фазой, измельчение становится устойчивым и более эффективным за счет перехода к оптимальным концентрациям и более высокой скорости разрушения частиц (механизм удара). высокоскоростного Оптимальный режим обозначаем режимом 2. Далее, если не производится подача материала в струю, процесс переходит в режим 3, особенностью которого является продолжающаяся разгрузка струй с сохраняющейся достаточно высокой скоростью разрушения частиц ударами, но недостаточной концентрацией твердой фазы. В этом режиме измельчение происходит уже недостаточно эффективно из-за пониженной вероятности встречных ударов частиц в зоне

помола. В процессе измельчения возможен режим 4 некоторой перегрузки струй материалом, за которым может наступить "завал" помольной камеры в результате уменьшения относительной скорости разгона и разрушения частиц. В режиме 4 наблюдается

резкое снижение эффективности измельчения

и производительности мельницы.

Таким образом, проблема создания работой управления системы струйной измельчительной установки, включающей наблюдение состоянием загрузки за разгрузки струй, своевременной подачи новой порции материала, является важной актуальной. В данной работе решалась задача идентификации различных стадий процесса и состояний загрузки струй на основе анализа амплитудно-частотных характеристик акустического излучения зоны помола.

Исследования были проведены C различной материалами прочности и крупности: шамот (3 -0 мм), уголь каменный и бурый (2-0 мм), известняк (2-0 мм). Для измельчения использовалась противоточная струйная установка лабораторного типоразмера производительностью 2-30 кг/ч, энергоноситель – сжатый воздух среднего Производительность давления. мельницы рассчитывалась на основе взвешивания готового продукта, осажденного в циклоне. загружаемого Macca порций материала составляла m = 1 кг, интервал их загрузки - 3-8 мин, длительность измельчения - 15-30 мин. Дисперсность продуктов струйного измельчения, измеренная по величине S _{уд} удельной поверхности на приборе Товарова, показала следующие результаты: шамот - S_{yd} = 0, 17-0,28 м²/г; известняк - S_{yd} = $0,3-0,68 \text{ м}^2/\text{г}$; газовый уголь - S _{уд} = 0,97-1,88 M^2/Γ ; бурый уголь - S $_{yд}$ = 1,11-1,32 M^2/Γ .

Наиболее информативными параметрами акустического мониторинга являются скорость счета (активность АЭ) *№*акустических сигналов (AC), суммарный счет импульсов N за выбранный промежуток времени, максимальная амплитуда А АЭ и ее величине, распределение ПО а также некоторые другие закономерности, установленные по следующей методике [4].

Записи акустических сигналов (АС) анализировались в разные моменты технологического процесса измельчения, характерные для различных состояний струй: начало подачи материала в струю (т до 10 с), период интенсивного измельчения (рабочий режим, т - от нескольких десятков секунд) и заключительную стадию разгрузки струй, предваряющую режим фонового шума струи.

Определялись величины суммарного счета всех АС различных амплитуд и наиболее характерной (средневзвешенной) амплитуды А^{ср} за период регистрации. При этом, вопервых, в расчете А^{ср} учитывались сигналы с долевым участием более 1 % и, во-вторых, из общего количества N_{Σ} сигналов исключалось число N_x AC фонового шума (режим шума струи без твердой фазы). В этой связи полагаем, что найденная величина $N^{\infty} = (N_{\Sigma} - N_{x}) / T$ акустической активности (имп/с) пропорциональна числу соударений частиц с волноводом.

На рис. 1 показаны записи амплитуд сигналов АЭ на изучаемых стадиях

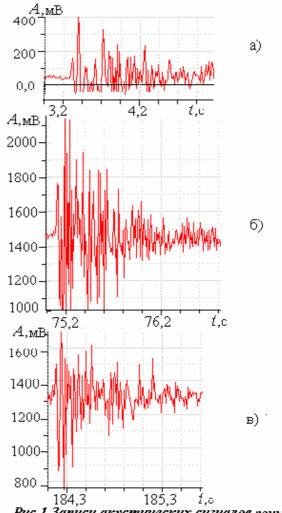
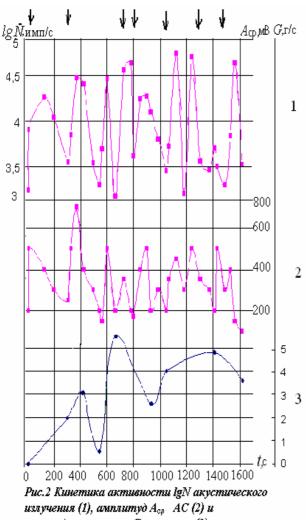



Рис. 1 Записи акустических сигналов зоны помола в различных состояниях струй при измельчении шамота (d=3-0,5мм): а) загрузка струй материалом б) рабочий режим; в) разгрузка струй

измельчения **(в режимах 1, 2, 3)**, начиная с подачи в струю исходного материала (шамота), заканчивая выносом готового продукта в

циклон из системы помола-классификации. Величины максимальных амплитуд АС в оптимальном режиме составляют 1800-2100 мВ, тогда как в режиме начинающейся разгрузки струй - 1500-1600 мВ, и тем более, в начале подачи и разгона большой массы частиц – 200-400 мВ.

На рис. 2 сопоставлены во времени изменения производительности G зоны помола (в логарифмических координатах) характерной A_{cp} амплитуды (средневзвешенный для временного интервала в 1с полуразмах записанной амплитуды АС). Подача порций массой в 1 кг измельчаемого материала (шамот, исходная крупность 3-0,5 мм) обозначена стрелками.

производительности С мельницы (3) при измельчении шамота

показал. что максимальные уровни производительности мельницы G = 4г/с (3) соответствуют акустической активности $\lg N = 4,5-4,7$ (1), тогда как в других, менее эффективных режимах измельчения (G =2.5-3.5 r/c) наблюдается ослабленное акустическое излучение: lg N = 3,5-3,7.

Проведенными ранее исследованиями промышленной газоструйной установки [5, 6] была установлена связь внутреннего и внешнего акустического излучения помольной камеры с загрузкой струй материалом. Отмечается, что внутренняя акустическая активность имеет ярко выраженный частотный диапазон выше 63 кГц. Изменения акустической активности в ходе измельчения преимущественно наблюдались в октавной полосе частот 125кГц, что было конечной полосой для измерительной допуска аппаратуры, используемой в описанных в [5] экспериментах. Высказано предположение о полезной информативности частот в более высоком диапазоне при использовании более чувствительной аппаратуры (до 1МГц).

В этой связи была применена методика построения амплитудно-частотных характеристик АС на различных частотах F их регистрации: F =400кГц, 300кГц и 200кГц с использованием программы "Power Graph" [7]. Эта программа дает возможность проводить спектральный анализ сигналов, а также осуществлять регистрацию данных построением спектров в режиме реального времени. Производилась выборка характерной записи АС за интервал 1с для каждого исследуемого технологического режима определенной частоте F регистрации AC с последующим выявлением диапазона эффективной частоты w_{эф}. За w_{эф} принимали наблюдаются частоту, при которой максимальные значения амплитуд AC. ответственных за наиболее эффективные максимальным удары выходом С диспергированных частиц.

Эксперименты показали, акустический показатель $w_{\text{эф}}$ потенциальной эффективности измельчения изменяется следующим образом в зависимости от частоты F регистрации AC: при F=400кГц w_{эф} ≈150÷170 кГц, при F=300кГц w_{эф} ≈125÷135 кГц, при F=200кГц w_{эф} ≈25÷30 кГц. При частотах F меньшей величины характерной области эффективных частот $w_{3\Phi}$ обнаружить не удалось.

На рис. 3, 4 приведены результаты обработки измерений амплитуд и частоты в различных условиях стадиальности струйного измельчения. Проведенный анализ позволяет величину A_{w} амплитуды соответствующую диапазону эффективной частоты $w_{3\varphi}$ акустического излучения зоны помола за качественный признак степени загрузки струй материалом. Полагаем, что этот акустический параметр A_w применим для поиска эффективной стадии процесса измельчения в системе управления работой мельницы.

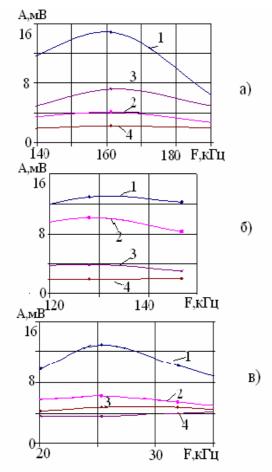


Рис 3. Амплитудно-частотные характеристики измельчения газового угля при частоте регистрации 400кГц (а), 300кГц (б) и 200кГц (в) для различных режимов измельчения: 1-загрузка (3c),

2-3 - рабочие режимы (1-2мин), 4-разгрузка (4мин)

Как видно из рис. За, величина параметра A_w возрастает в начале рабочего режима (A_w =15 мВ), затем уменьшается в ходе измельчения (A_w =7-4 мВ) и значительно уменьшается (A_w =2 мВ) на стадии разгрузки мельницы, работающей с низкой производительностью (см. рис. 2, G менее 3-2г/с).

В процессе управления эффективностью струйного измельчения на основе использования амплитудно-частотных характеристик зоны помола и, в частности, амплитуды A_w AC частоту порядка $w_{3\Phi}$

≈150÷170 кГц (при F=400кГц) следует считать наиболее информативной.

В процессе управления эффективностью струйного измельчения на основе использования амплитудно-частотных характеристик зоны помола и, в частности, амплитуды A_w AC частоту порядка $w_{\text{эф}} \approx 150 \div 170$ кГц (при F=400кГц) следует считать наиболее информативной.

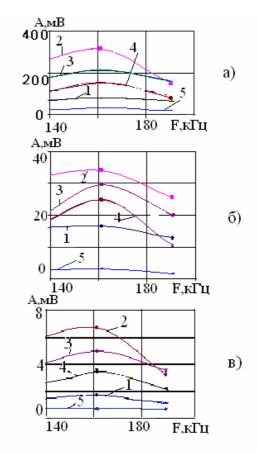


Рис.4. Амплитудно-частотные характеристики измельчения шамота (а), известняка (б), бурого угля (в) при частоте регистрации АС 400кГи: 1-загрузка (3c), 2-3 - рабочие режимы (1-3мин), 4-разгрузка (4мин),

Из рис. 4 видно, что с уменьшением плотности вещества (от 3,0 - для шамота до 1,4 г/см³ - для угля) измельчаемых частиц уменьшается величина регистрируемых амплитуд АС из-за прямо пропорциональной зависимости ударного импульса давления от плотности разрушаемого объекта.

С течением времени измельчения повышается дисперсность твердой фазы газовзвеси, что естественно приводит к уменьшению давления при ударах частиц и в конечном счете к меньшим величинам характерных амплитуд АС: например, для

2009

шамота амплитуда A_w уменьшается от 300 до 150 мВ (см. рис. 4а – графики 2, 4).

Обобщая экспериментальные результаты, сделаем следующие выводы.

- 1. Изменения технологического процесса (стадиальности) струйного измельчения, включая подачу в струю материала, различные состояния струй по содержанию твердой фазы и динамичности разрушения частиц, обусловливают изменения амплитудных распределений акустических сигналов в зоне помола.
- 2. Для разработки системы управления эффективностью струйного процесса предлагается использование амплитудночастотных характеристик зоны помола, анализ которых позволяет установить акустический показатель потенциальной эффективности измельчения эффективную частоту $\mathbf{w}_{\text{эф}}$ акустического излучения при измельчении.
- 3. Поиск эффективной стадии процесса измельчения, реализующей наиболее эффективные удары с максимальным выходом диспергированных частиц, следует проводить на основе определения амплитуды $A_{\rm w}$ акустических сигналов в диапазоне установленной эффективной частоты $w_{\rm sp}$.
- 4. При частоте регистрации АС F=400кГц и эффективной частоте $w_{3\phi}$ ≈150÷170 кГц величина амплитуды A_w изменяется от 300 до 9 мВ в зависимости от степени загрузки струй материалом, плотности вещества и дисперсности измельчаемых частиц (шамот, известняк, уголь газовый и бурый).
- 5. Повышение уровня акустической активности зоны помола (Ig № от 4 до 5,5) на любой стадии является фактором роста числа ударов частиц и, следовательно, интенсификации измельчения и увеличения производительности мельницы.

Литература

- 1. P.I. Pilov, L.J.Gorobets, V.N. Bovenko, N.S. Pryadko /An acoustic monitoring of the sizes changes of grinded particles// Науковий вісник НГУ. 2008. №6. С. 23-26.
- 2. Пилов П.И., Горобец Л.Ж., Прядко Н.С., Верхоробина И.В., Бевзенко Б.Ф., Кравченко В.П. Мониторинг изменений технологических и режимных параметров в процессе струйного измельчения строительных материалов // Матер. науч.-техн. конф. «Применение дисперсных и ультра—(нано-) дисперсных порошк. систем в пром. технолог, С.-П., 2008, С. 112-127.
- 3. Апериодический датчик для регистрации акустических сигналов: А.с. 512602 СССР /В.Н. Бовенко, В.И. Полунин (СССР). Опубл. 30.08.76, Бюл. №16. 2с.
- 4. Пилов П.И., Горобец Л.Ж., Бовенко В.Н., Прядко Н.С. Акустическое исследование измельчаемости гетерогенных материалов струйным способом. ЗКК, №34(75), 2008, С. 67-74.
- 5. Пилов П.И., Горобец Л.Ж., Бовенко В.Н., Щербаков А.Е., Прядко Н.С., Верхоробина И.В., Параметры акустического излучения промышленной газоструйной установки //Вісник нац. техн. університета «ХПИ». Харьков, 2007. Вип. № 27 С.33-41.
- 6. Горобець Л.Ж., Прядко Н.С., Стрельніков Г.О, Верхоробіна І.В. Застосування акустоемісійного моніторінгу щодо струменевого подрібнення // Автоматизація виробничих процесів у машинобудуванні та приладобудуванні.—Львів.- 2006.—вип.40.—С.69-74.
- 7. Измайлов Д.Ю. Виртуальная измерительная лаборатория "Power Graph" //ПиКАД: Промышленные измерения, контроль, автоматизация, диагностика. 2007, №3, С. 42-47.